

International Journal of Technical Research & Science ON CR-STRUCTURE AND F(2v+5,1) STRUCTURE SATISFYING F^{2V+5}+F=0

Abhiram Shukla, Prof. Ram Nivas Email Id : abhiram1975@gmail.com Department of mathematics and astronomy University of lucknow, Lucknow. U P

Abstract-CR-submanifolds of a kahlerian manifold have been defined by A. Bejancu [1], and are now being studied by various authors, see [2] and [9]. The theory of **f**-structure was developed by Yano [10], Yano and Ishihara [11], Goldberg [6] and among others. The purpose of this paper is to show a relationship between CR- structures and F (2v + 5, 1)-structure satisfying

$$F^{2\nu+5} + F = 0.$$

1. INTRODUCTION

Let F be a non-zero tensor field of the type (1, 1) and of class C^{∞} on an n-dimensional manifold M such that [7]

 $F^{2\nu+5} + F = 0.$

The rank of (F) = \mathbf{r} =constant. Let us define the operators on M as follows [7]

 $l = -F^{2\nu + 4}$.

$$m = I + F^{2\nu + 4}$$
.

Where I denotes the identity operator. We will state the following two theorems[7] **Theorem 1.1.** Let M be an F(2v+5, 1)-structure manifold satisfying(1.1), then

$$l + m = l$$

$$l^2 = l, m^2 = m$$
And $lm = ml = 0$
1.3

Thus for (1, 1) tensor field $F(\neq 0)$ satisfying (1.1), there exist complementary distributions D_l and D_m corresponding to the projection op- erators 1 and m respectively. Then, dim $D_l = r$ and dim $D_m = (n - r)$.

Theorem 1.2

We have,

a-
$$lF = Fl$$
, $mF = Fm = 0$
b- $F^{2\nu+4}m = 0$
c- $F^{2\nu+4}l = -1$
1.4

Thus $F^{\,\nu+2}$ acts on D_{I} as an almost complex structure and on $D_{m}\,$ as a null operator.

2. NIJENHUIS TENSOR

The Nijenhuis tensor N(X, Y) of F satisfying (1.1) in M is expressed as follows for every vector field X, Y on M.

$$(X, Y) = [FX, FY] - F[FX, Y] - F[X, FY] + F2[X, Y]$$
 2.1

Definition 2.1. If X, Y are two vector fields in M, then their lie bracket [X, Y] is defined by [X, Y] = XY - YX (2.2)

3. CR-STRUCTURE

Let M be a differentiable manifold and T_cM be its complexified tangent bundle. A CR-structure on M is a complex subbundle H of T_cM such that $H_P \cap \bar{H}_p = 0$ and H is involutive i.e. for complex vector fields X and Y in H, [X, Y] is in H.

www.ijtrs.com www.ijtrs.org 1.1

1.2

Paper Id: IJTRS-V2-I5-011

Volume 2 Issue V, June 2017

International Journal of Technical Research & Science

3.1 CR-manifold

Let F-structure given by equation (1.1) be an integrable structure of rank $r = 2\underline{m}$ on M. We define complex sub bundle H of T_cM by

 $H_{P} = \{ X - \sqrt{-1}F X, X \in \chi(D_{l}) \}, \text{ where } \chi(D_{l}) \text{ is the } F(D_{m}) \text{ module of all differentiable sections of } D_{l} \text{ then } R_{e}(H) = D_{l} \text{ and } H_{P} \cap \overline{H}_{p} = 0,$

where $\bar{H}_{\! D}$ denotes the complex conjugate of $H_{\! P}$.

Theorem 3.1

If P and Q are two elements of H then the following relations holds

 $[P,Q] = [X,Y] - [FX,FY] - \sqrt{-1}([X,FY] + [FX,Y])$ Proof. Let us define $P = X - \sqrt{-1}FX$ and $Q = Y - \sqrt{-1}FY$, then and on by direct calculation simplifying, we obtain $[P,Q] = [X - \sqrt{-1}FX, Y - \sqrt{-1}FY] = [X,Y] - [FX,FY] - \sqrt{-1}([X,FY] + [FX,Y])$ 3.1 Theorem 3.2 If F(2v + 5, 1)-structure satisfying equation (1.1) is integrable then we have $-F^{2\nu+3}([FX, FY] + F^{2}[X, Y]) = l([FX, Y] + [X, FY])$ 3.2 Proof. From equation (2.1), we have N(X, Y) = [FX, FY] - F[FX, Y] - F[X, FY] +Since N(X, Y) = 0, we obtain $[FX, FY] + F^{2}[X, Y] = F([FX, Y] + [X, FY]]$ 3.3 Operating (3.3) by $(-F^{2\nu+3})$, we get $(-F^{2\nu+3})([FX, FY] + F^{2}[X, Y]) =$ ([FX, Y] + [X, FY])In view of equation (1.2) in the above equation, we obtain (3.2), which proves the theorem.

Theorem 3.3

The following identities hold

$$mN(X, Y) = m[FX, FY].$$

$$mN(F^{2\nu+3}X, Y)$$
3.4

 $m[F^{2\nu+4}X, FY].$ 3.5

Proof. The proof of equations (3.4) and (3.5) follows easily by virtue of theorems 1.1, 1.2 and equation (2.1).

Theorem3.4

For any two vector fields X and Y, the following con- ditions are equivalent

a.
$$mN(X, Y) = 0,$$

b. $m[FX, FY] = 0,$
c. $mN(F^{2\nu+3}X, Y) = 0,$
d. $m[F^{2\nu+4}X, FY] = 0,$
e. $m[F^{2\nu+4}IX, FY] = 0.$
(1.2) (2.1) and theorems 1.2.

Proof. In consequence of equations (1.1), (1.2), (2.1) and theorems 1.2, 3.3, the above identities can be proved to be equivalent.

Theorem3.5

If $F^{\nu+2}$ acts on D₁ as an almost complex structure, then

$$m[F^{\nu+2}1X, FY] = m[^{\nu}-1X, FY] = 0.$$
 3.6

pg. 362

www.ijtrs.com www.ijtrs.org

Paper Id: IJTRS-V2-I5-011

Volume 2 Issue V, June 2017

@2017, IJTRS All Right Reserved

International Journal of Technical Research & Science

Proof. In view of equations (1.4a), (1.4b), we see that $F^{\nu+2}$ acts on D₁ as an almost complex

structure then equation (3.6) follows in an obvious manner. To show that $m[F^{\nu+2}IX, FY] = 0$, we use the definition 2.1 and in view of equation (1.4 a), the result follows directly.'

Theorem3.6

For X, Y $\in \chi(D_1)$, we have

l([X, FY] + [FX, Y]) = [X, FY] + [FX, Y]

Proof. Since [X, FY] and [FX, Y] $\in \chi(D_1)$, on making use of (1.4a) and definition 2.1 we obtain the result.

Theorem3.7

The integrable F(2v + 5, 1)-structure satisfying (1.1) on M defines a CR-structure H on it such that $R_eH = D_1$.

Proof. In view of the fact that [X, FY] and $[FX, Y] \in \chi(D_1)$ and on using equations (3.1), (3.2) and theorem 3.6, we have $[P, Q] \in \chi(D_1)$. Then F(2v + 5, 1)-structure satisfying (1.1) on M defines a CR-structure.

Definition 3.8

Let \widetilde{K} be the complementary distribution of $R_e(H)$ to TM. We define a morphism of vector bundles $F:TM \to TM$ given by $F(X) = 0 \forall X \in \chi F(\widetilde{K})$ such that

$$F(X) = \frac{1}{2}\sqrt{-1}(P - \overline{P}) \text{ where } P = X + \sqrt{-1}Y, Y \in X(H_P) \text{ and } \overline{P} \text{ is complex conjugate of } P$$
Corollary3.9.[3] If $P = X + \sqrt{-1}Y$ and $\overline{P} = X - \sqrt{-1}Y$ belong to H_P and
$$F(X) = \frac{1}{2}\sqrt{-1}(P - \overline{P}), F(Y) = \frac{1}{2}\sqrt{-1}(P + \overline{P})$$
And $F(-Y) = -\frac{1}{2}(P + \overline{P})$ then $F(X) = -Y, F^2(X) = -X$ and $F(-Y) = -X$
and $F(-Y) = -X$

Theorem 3.10

If M has a CR-structure H, then we have $F^{2\nu+5} + F = 0$ and consequently $F(2\nu + 5, 1)$ -structure satisfying (1.1) is defined on M such that the distributions D1 and D_m coincide with Re(H) and K respectively. Proof .Suppose M has a CR-structure. Then in view of definition 3.8 and corollary 3.9, we have

$$F(X) = -Y. 3.8$$

Operating (3.8) by F^{2K} we

$$F^{2\nu}(F(X) = F^{2\nu}(-Y)$$
 3.9

We can write the right hand side of (3.9) as follows

$$F^{2\nu+1}(X) = F^{2\nu-1}$$
 (F (-Y) 3.10

On making use of corollary 3.9, the above equation becomes

F

$$F^{2\nu+1}(X) = F^{2\nu-1}(-X) = -F^{2\nu-1}(X), \qquad 3.11$$

which can be written as

$$F^{2\nu+1}(X) = -F^{2\nu-2}(F(X))$$

= -F^{2\nu-2}(-Y)
= F^{2\nu-2}(Y) 3.12

We continue simplifying in this manner and obtain

$$2\nu + 1(X) = -F(X)$$
 3.13

i.e

$$F^{2\nu+1}(X) + F(X) = 0.$$
 3.14

Similarly we have $F^{2\nu+3}(X) = F^{2\nu+1}(-X)$

pg. 363

www.ijtrs.com www.ijtrs.org

Paper Id: IJTRS-V2-I5-011

Volume 2 Issue V, June 2017

@2017, IJTRS All Right Reserved

3.19

International Journal of Technical Research & Science

$$= -F^{2\nu+1}(X)$$
 3.15
$$F^{2\nu+3}(X) = -F^{2\nu}(F(X))$$

i.e

$$= -F^{2\nu} (F(X))$$

$$= -F^{2\nu} (-Y) \qquad 3.16$$

 $= F^{2\nu}(Y)$

We continue simplifying in this manner and obtain

$$F^{2\nu+3}(X) = -F(X)$$
 3.17

$$F^{2v+3}(X) + F(X) = 0.$$
 3.18

Again, we continue simplifying in this manner and obtain,

$$F^{2V+3}(X) + F(X) = 0.$$

ACKNOWLEDGEMENT

The author is grateful to Prof. Ram Nivas, Ex Head of the Department of Mathematics and Astronomy, Lucknow University Lucknow, for their guidance in the preparation of this paper.

REFERENCES

- Bejancu, A., CR-Submanifolds of Kaehler manifold, I. Proc. Amer. Math. Soc., 69(1978), no.-1, 135-142.
- [2] Blair, D.E. and Chen, B.Y., On CR-submanifolds of Hermitian manifolds Israel Journal of Mathemarics. Vol. 34 No. 4, pp. 353-363 (1979).
- [3] Das, L.S., On CR-structure and F-structure satisfying $F^{K} + (r)^{K+1=0}$ Rocky Mountain Journal of Mathematics. USA., 2004.
- [4] Das, L.S. and Nivas, R., On differentiable manifold with [F1, F2](K + 1, 1)- structure, Tensor, N.S. Volume 65(1), pp. 29-35(2004).
- [5] Das, L.S., Nivas, R. and Singh, A., On CR-structures and F-structure satisfying $F^{4n} + F^{4n-1} + \dots + F^2 + F = 0$, Tensor, N. S., Vol. 70, 255-260(2008).
- [6] Goldberg, S.I., On the existence of manifold with an F -structure Tensor, N. S. 26 pp. 323-329 (1972).
- [7] Nikkie, J., F (2k + 1, 1)-structure on the Lagrangian space FILOMAT (Nis) pp. 161-167 (1995).
- [8] Singh, A., On CR-structures and F structure satisfying $F^{2K} + P + F^{2K} = 0$, Int. J. Contemp. Math. Sciences, Vol. 4, no. 21, 1029-1035(2009).
- [9] Yano, K. and Kon, M., Differential Geometry of CR-submanifolds Geome- triae Dedicata, Vol. 10, pp. 369-391 (1981).
- [10] Yano, K., On structure defined by a tensor field F of type (1,1) satisfying $F^3 + F = 0$. Tensor, N. S., 14 pp. 99-109 (1963).
- [11] Yano, K. and Ishihara, S., On integrability of a structure F satisfying F³ + F = 0, Quart J. Math., Oxford, 25 pp. 217-222 (1964).

www.ijtrs.com www.ijtrs.org pg. 364

Paper Id: IJTRS-V2-I5-011

Volume 2 Issue V, June 2017

@2017, IJTRS All Right Reserved