International Journal of Technical Research \& Science

ON CR-STRUCTURE AND F(2v+5,1) STRUCTURE SATISFYING $\mathrm{F}^{2 \mathrm{~V}+5}+\mathrm{F}=0$

Abhiram Shukla, Prof. Ram Nivas
Email Id : abhiram1975@gmail.com
Department of mathematics and astronomy
University of lucknow, Lucknow. U P

Abstract

CR-submanifolds of a kahlerian manifold have been defined by A. Bejancu [1], and are now being studied by various authors, see [2] and [9]. The theory of \mathbf{f}-structure was developed by Yano [10], Yano and Ishihara [11], Goldberg [6] and among others. The purpose of this paper is to show a relationship between CR- structures and $\mathrm{F}(2 v+5,1)$-structure satisfying

$$
F^{2 v+5}+F=0
$$

1. INTRODUCTION

Let F be a non-zero tensor field of the type $(1,1)$ and of class C^{∞} on an n-dimensional manifold M such that [7]

$$
F^{2 v+5}+F=0
$$

Where I denotes the identity operator. We will state the following twe theorems[7]
Theorem 1.1. Let M be an $\mathrm{F}(2 v+5,1)$-structure manifold satisfying(1.1), then

$$
\begin{align*}
& l+m=I \\
& l^{2}=l, m^{2}=m \\
& \text { And } l m=m l=0
\end{align*}
$$

Thus for $(1,1)$ tensor field $F(\neq 0)$ satisfying (1.1), there exist complementary distributions D_{l} and D_{m} corresponding to the projection op- erators 1 and m respectively. Then, $\operatorname{dim} D_{1}=r$ and $\operatorname{dim} D_{m}=(n-$ r).

Theorem 1.2

We have,

$$
a-l F=F l, m F=F m=0
$$

$$
\text { b- } F^{2 v+4} m=0
$$

Thus F^{v+2} acts on D_{l} as an almost complex structure and on D_{m} as a null operator.

2. NIJENHUIS TENSOR

The Nijenhuis tensor $\mathrm{N}(\mathrm{X}, \mathrm{Y})$ of F satisfying (1.1) in M is expressed as follows for every vector field X, Y on M.

$$
\mathrm{N}(\mathrm{X}, \mathrm{Y})=[\mathrm{FX}, \mathrm{~F} Y]-\mathrm{F}[\mathrm{FX}, \mathrm{Y}]-\mathrm{F}[\mathrm{X}, \mathrm{FY}]+\mathrm{F}^{2}[\mathrm{X}, \mathrm{Y}]
$$

Definition 2.1. If X, Y are two vector fields in M, then their lie bracket $[X, Y]$ is defined by $[\mathrm{X}, \mathrm{Y}]=\mathrm{XY}-\mathrm{Y} \mathrm{X}$

3. CR-STRUCTURE

Let M be a differentiable manifold and $\mathrm{T}_{\mathrm{c}} \mathrm{M}$ be its complexified tangent bundle. A CR-structure on M is a complex subbundle H of $T_{C} M$ such that $H P \cap \bar{H}_{p}=0$ and H is involutive i.e. for complex vector fields X and Y in $\mathrm{H},[\mathrm{X}, \mathrm{Y}]$ is in H .

International Journal of Technical Research \& Science

3.1 CR-manifold

Let F -structure given by equation (1.1) be an integrable structure of rank $\mathrm{r}=2 \underline{\mathrm{~m}}$ on M . We define complex sub bundle H of $\mathrm{T}_{\mathrm{C}} \mathrm{M}$ by $\mathrm{HP}_{\mathrm{P}}=\left\{\mathrm{X}-\sqrt{-1} \mathrm{~F} \mathrm{X}, \mathrm{X} \in \chi\left(\mathrm{D}_{1}\right)\right\}$, where $\chi\left(\mathrm{D}_{1}\right)$ is the $\mathrm{F}\left(\mathrm{D}_{\mathrm{m}}\right)$ module of all differentiable sections of D_{1} then $\operatorname{Re}(H)=D_{l}$ and $H P \cap \bar{H}_{p}=0$, where \bar{H}_{p} denotes the complex conjugate of HP .

Theorem 3.1

If P and Q are two elements of H then the following relations holds

$$
[P, Q]=[X, Y]-[F X, F Y]-\sqrt{-1}([X, F Y]+[F X, Y])
$$

Proof. Let us define $P=X-\sqrt{-1} F X$ and $\mathrm{Q}=Y-\sqrt{-1} F Y$, then by direct calculation and on simplifying, we obtain

$$
[P, Q]=[X-\sqrt{-1} F X, Y-\sqrt{-1} F Y]=[X, Y]-[F X, F Y]-\sqrt{-1}([X, F Y]+[F X, Y])
$$

Theorem 3.2
If $\mathrm{F}(2 v+5,1)$-structure satisfying equation (1.1) is integrable then we have

$$
-\mathrm{F}^{2 v+3}\left([\mathrm{FX}, \mathrm{FY}]+\mathrm{F}^{2}[\mathrm{X}, \mathrm{Y}]\right)=1([\mathrm{FX}, \mathrm{Y}]+[\mathrm{X}, \mathrm{FY}]) .
$$

Proof. From equation (2.1), we have

$$
\mathrm{N}(\mathrm{X}, \mathrm{Y})=[\mathrm{FX}, \mathrm{FY}]-\mathrm{F}[\mathrm{FX}, \mathrm{Y}]-\mathrm{F}[\mathrm{X}, \mathrm{FY}]+\mathrm{F}^{2}[\mathrm{X}, \mathrm{Y}] .
$$

Since $\mathrm{N}(\mathrm{X}, \mathrm{Y})=0$, we obtain

$$
[F X, F Y]+F^{2}[X, Y]=F(F X, Y]+[X, F Y] .
$$

Operating (3.3) by ($-\mathrm{F}^{2 v+3}$), we get

$$
\left(-\mathrm{F}^{2 v+3}\right)\left([\mathrm{F} \mathrm{X}, \mathrm{~F} Y]+\mathrm{F}^{2}[\mathrm{X}, \mathrm{Y}]\right)=\left(-\mathrm{F}^{2 v+4}\right)([\mathrm{F} \mathrm{X}, \mathrm{Y}]+[\mathrm{X}, \mathrm{~F} Y])
$$

In view of equation (1.2) in the above equation, we obtain (3.2), which proves the theorem.

Theorem 3.3

The following identities hold

$$
\begin{aligned}
& \mathrm{mN}(\mathrm{X}, \mathrm{Y})=\mathrm{m}[\mathrm{FX}, \mathrm{~F} \mathrm{Y}] . \\
& \mathrm{mN}\left(\mathrm{~F}^{2 v+3} \mathrm{X}, \mathrm{Y}\right) \\
& =\mathrm{m}\left[\mathrm{~F}^{2 v+4} \mathrm{X}, \mathrm{FY}\right] .
\end{aligned}
$$

Proof. The proof of equations (3.4) and (3.5) follows easily by virtue of theorems 1.1, 1.2 and equation (2.1).

Theorem3.4

For any two vector fields \mathbf{X} and \perp, the following con- ditions are equivalent
a. $\quad \mathrm{mN}(\mathrm{X}, \mathrm{Y})=0$,
b. $m[F X, F Y]=0$,
c. $\mathrm{mN}\left(\mathrm{F}^{2 v+3} \mathrm{X}, \mathrm{Y}\right)=0$,
d. $\mathrm{m}\left[\mathrm{F}^{2 v+4} \mathrm{X}, \mathrm{FY}\right]=0$,
e. $\mathrm{m}\left[\mathrm{F}^{2 v+4} 1 \mathrm{X}, \mathrm{FY}\right]=0$.

Proof. In consequence of equations (1.1), (1.2), (2.1) and theorems 1.2, 3.3, the above identities can be proved to be equivalent.

Theorem3.5

If F^{v+2} acts on D_{1} as an almost complex structure, then

$$
m\left[F^{v+2} 1 X, F Y\right]=m[-1 X, F Y]=0 .
$$

International Journal of Technical Research \& Science

Proof. In view of equations (1.4a), (1.4b), we see that F^{v+2} acts on D_{l} as an almost complex structure then equation (3.6) follows in an obvious manner. To show that $m\left[F^{\nu+2} 1 X, F Y\right]=0$, we use the definition 2.1 and in view of equation (1.4 a), the result follows directly.'

Theorem3.6

For $\mathrm{X}, \mathrm{Y} \in \chi\left(\mathrm{D}_{1}\right)$, we have

$$
1([X, F Y]+[F X, Y])=[X, F Y]+[F X, Y]
$$

Proof. Since $[\mathrm{X}, \mathrm{F} Y]$ and $[\mathrm{F}, \mathrm{X}, \mathrm{Y}] \in \chi\left(\mathrm{D}_{1}\right)$, on making use of (1.4a) and definition 2.1 we obtain the result.

Theorem3.7

The integrable $\mathrm{F}(2 v+5,1)$-structure satisfying (1.1) on M defines a CR -structure H on it such that $\mathrm{R}_{\mathrm{e}} \mathrm{H}=$ D_{1}.
Proof. In view of the fact that $[\mathrm{X}, \mathrm{FY}]$ and $[\mathrm{FX}, \mathrm{Y}] \in \chi\left(\mathrm{D}_{1}\right)$ and on using equations (3.1), (3.2) and theorem 3.6, we have $[\mathrm{P}, \mathrm{Q}] \in \chi\left(\mathrm{D}_{1}\right)$. Then $\mathrm{F}(2 v+5,1)$-structure satisfying (1.1 .1$)$ on M defines a CRstructure.

Definition 3.8

Let \widetilde{K} be the complementary distribution of $R_{e}(H)$ to TM. We define a morphism of vector bundles $F: T M \rightarrow T M$ given by $F(X)=0 \forall X \in \chi \mathrm{~F}(\widetilde{K})$ such that

$$
\mathrm{F}(\mathrm{X})=\frac{1}{2} \sqrt{-1}(\mathrm{P}-\overline{\mathrm{P}}) \text { where } \mathrm{P}=\mathrm{X}+\sqrt{-1} \mathrm{Y}, \mathrm{Y} \in X\left(H_{P}\right) \text { and } \bar{P} \text { is complex conjugate of } \mathrm{P} .
$$

Corollary3.9.[3] If $P=X+\sqrt{-1} Y$ and $\bar{P}=X-\sqrt{-1} Y$ belong to H_{P} and

$$
\mathrm{F}(\mathrm{X})=\frac{1}{2} \sqrt{-1}(\mathrm{P}-\overline{\mathrm{P}}), \mathrm{F}(\mathrm{Y})=\frac{1}{2} \sqrt{-1}(\mathrm{P}+\overline{\mathrm{P}})
$$

$\operatorname{AndF}(-Y)=-\frac{1}{2}(P+\bar{P})$ then $F(X)=-X, F^{2}(X)=-X$ and $F(-Y)=-X$

Theorem 3.10

If M has a CR-structure H , then we have $\mathrm{F} 2 \chi+5+\mathrm{F}=0$ and consequently $\mathrm{F}(2 v+5,1)$-structure satisfying (1.1) is defined on M such that the distributions D_{1} and D_{m} coincide with $\operatorname{Re}(H)$ and R respectively.

Proof .Suppose M has a CR-structure. Then in view of definition 3.8 and corollary 3.9, we have

$$
F(X)=-Y
$$

Operating (3.8) by $\mathrm{F}^{2 \mathrm{~K}}$ we get

$$
\mathrm{F}^{2 v}\left(\mathrm{~F}(\mathrm{X})=\mathrm{F}^{2 v}(-\mathrm{Y})\right.
$$

We can write the right hand side of (3.9) as follows

$$
\mathrm{F}^{2 v+1}(\mathrm{X})=\mathrm{F}^{2 v-1}(\mathrm{~F}(-\mathrm{Y})
$$

On making use of corollary 3.9 , the above equation becomes

$$
\begin{gather*}
\mathrm{F}^{2 v+1}(\mathrm{X})=\mathrm{F}^{2 v-1}(-\mathrm{X}) \\
=-\mathrm{F}^{2 v-1}(\mathrm{X}),
\end{gather*}
$$

which can be written as

$$
\begin{align*}
\mathrm{F}^{2 v+1}(\mathrm{X}) & =-\mathrm{F}^{2 v-2}(\mathrm{~F}(\mathrm{X})) \\
& =-\mathrm{F}^{2 v-2}(-\mathrm{Y}) \\
& =\mathrm{F}^{2 v-2}(\mathrm{Y})
\end{align*}
$$

We continue simplifying in this manner and obtain

$$
F^{2 v+1}(X)=-F(X)
$$

i.e

$$
F^{2 v+1}(X)+F(X)=0 .
$$

Similarly we have $F^{2 v+3}(X)=F^{2 v+1}(-X)$

International Journal of Technical Research \& Science

$$
\begin{align*}
& =-\mathrm{F}^{2 v+1}(\mathrm{X}) \\
\mathrm{F}^{2 v+3}(\mathrm{X}) & =-\mathrm{F}^{2 v}(\mathrm{~F}(\mathrm{X}) \\
& =-\mathrm{F}^{2 v}(-\mathrm{Y}) \\
& =\mathrm{F}^{2 v}(\mathrm{Y})
\end{align*}
$$

We continue simplifying in this manner and obtain

$$
\begin{array}{r}
\mathrm{F}^{2 v+3}(\mathrm{X})=-\mathrm{F}(\mathrm{X}) \\
\mathrm{F}^{2 \mathrm{v}+3}(\mathrm{X})+\mathrm{F}(\mathrm{X})=0 .
\end{array}
$$

Again, we continue simplifying in this manner and obtain,

$$
\mathrm{F}^{2 v+5}(\mathrm{X})+\mathrm{F}(\mathrm{X})=0
$$

ACKNOWLEDGEMENT

The author is grateful to Prof. Ram Nivas, Ex Head of the Department of Mathematics and Astronomy, Lucknow University Lucknow, for their guidance in the preparation of this paper.

REFERENCES

[1] Bejancu, A., CR-Submanifolds of Kaehler manifold , I. Proc. Amer. Math. Soc., 69(1978), no.1, 135-142.
[2] Blair, D.E. and Chen, B.Y., On CR-submanifolds of Hermitian manifolds Israel Journal of Mathemarics. Vol. 34 No. 4, pp. 353-363 (1979).
[3] Das, L.S., On CR-structure and F-structure satisfying F K $+(-)^{K+1=0}$ Rocky Mountain Journal of Mathematics. USA., 2004.
[4] Das, L.S. and Nivas, R., On differentiable manifold with [$\left.\mathrm{F}_{1}, \mathrm{~F}_{2}\right](\mathrm{K}+1,1)$ - structure , Tensor, N.S. Volume 65(1), pp. 29-35(2004).
[5] Das, L.S., Nivas, R. and Singh, A., On CR-structures and F-structure satisfying F 4 n + F $4 n-1+$ \qquad $.+\mathrm{F}^{2}+\mathrm{F}=0$, Tensor, N. S., Vol. 70, 255-260(2008).
[6] Goldberg, S.I., On the existence of manifold with an F-structure Tensor, N. S. 26 pp. 323-329 (1972).
[7] Nikkie, J., F ($2 \mathrm{k}+1,1$)-structure on the Lagrangian space FILOMAT (Nis) pp. 161-167 (1995).
[8] Singh, A., On CR-structures and F-structure satisfying $F 2 K+P+F P=0$, Int. J. Contemp. Math. Sciences, Vol. 4, no. 21, 1029-1035(2009).
[9] Yano, K. and Kon, M., Differential Geometry of CR-submanifolds Geome- triae Dedicata, Vol. 10, pp. 369-391 (1981).
[10] Yano, K., On structure defined by a tensor field F of type (1,1) satisfying F $3+\mathrm{F}=0$. Tensor, N. S., 14 pp. 99-109 (1963).
[11] Yano, K. and Ishihara, S., On integrabilty of a structure F satisfying $F^{3}+F=0$, Quart J. Math., Oxford, 25 pp. 217-222 (1964).

